TOPIC PLAN

Partner organization	"Goce Delcev "- University Shtip, North Macadonia
Topic	Differentiation
Lesson title	Minimizing Material: Surface Area
Learning objectives	The student will: e calculate surface area and volume of a

- use technology (Excel spreadsheet, GeoGebra) to test and judge optimized dimensions
- use first derivative to find extreme value
- use second derivative to find maximum or minimal value

Aim of the
lecture /
Description of
the practical
problem

A manufacturer of food-storage containers wants to make a cylindrical can with a volume of 1000 cm^{3}.
The manufacturer wants the cost of can is as low as possible.
For this problem, we need to find the dimensions (radius and height of cylinder) such that the surface area is a small as possible.

Previous

 knowledge assumed:
Strategies/Activities

\square Graphic Organizer -Think/Pair/Share \square Modeling ∇ Collaborative learning ∇ Discussion questions ∇ Project based learning ∇ Problem based learning

Assessment for learning OObservations VConversations \quad Work sample \square Conference \square Check list \square Diagnostics

Assessment as learning

\square Self-assessment VPeer-assessment VPresentation \square Graphic Organizer चHomework
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^0]
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	$(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$ - sum rule $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$ - difference rule $(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$ product rule $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} \quad \text { for }$ $g(x) \neq 0$ - quotient rule The derivates are used for finding extreme value of the function. The function f has a minimum value at $x=c$ if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$. The function f has a maximum value at $x=c$ if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$.
Action	Let h is a height of the cylinder and r is a radius (both measured in centimeters). Volume of cylinder is $V=\pi r^{2} h$ From a formula of volume, we can find relate between r and h. The height can be expressed through the radius as follows: $\begin{aligned} & \pi r^{2} h=1000 \\ & h=\frac{1000}{\pi r^{2}} \end{aligned}$ The surface area of cylinder is sum from area of two circle $\left(r^{2} \pi\right)$ and area of rectangle ($2 r \pi h$) :

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

$A=2 r^{2} \pi+2 r \pi h$ With substituting for h is obtained: $A=2 r^{2} \pi+2 r \pi \frac{1000}{\pi r^{2}}=2 r^{2} \pi+\frac{2000}{r}$ Now, area A is function only of radius r. $A(r)=2 r^{2} \pi+\frac{2000}{r}$ It is clear, that the radius r is greater to zero ($r>$ $0)$. By differentiation is obtained: $A^{\prime}(r)=4 r \pi-\frac{2000}{r^{2}}$ To find a extreme value, we set the derivative equal to 0 . $\begin{aligned} & 4 r \pi-\frac{2000}{r^{2}}=0 \\ & 4 r \pi=\frac{2000}{r^{2}} \\ & r^{3}=\frac{2000}{4 \pi} \\ & r^{3}=\frac{500}{\pi} \\ & r=\sqrt[3]{\frac{500}{\pi}} \approx 5.41 \end{aligned}$ The critical value $r \approx 5.41$ is the only critical value in the interval $(0, \infty)$. To find that the critical value is a minimal or maximal value, we will find the second derivative:	

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

| Materials /
 equipment /
 digital tools /
 software | The materials for learning are given as a part of
 references of the end from this topic plan;
 Equipment: classroom, green board, chalk in
 different colors;
 Digital tools: laptop, projector, smart board;
 Software: Mathematica, GeoGebra. inTexna. |
| :--- | :--- | :--- |
| Consolidation | The students through the above example should understand that derivatives
 can be are used to solve many problems in real life. Also, that the first
 derivatives are used to find extreme values, and with the second derivatives
 it is found whether this value is minimum or maximum.
 Give the similar problem of the students, but instead of can to have shape of
 cylinder, to have shape of cubioid with square cross section.
 Question to the students:
 What difference would it make to the surface area if a cuboid with
 square cross section was used to hold the 1000 cm3 of drink?
 Do you think a cylinder is the best shape to use? Why? |

[^1]
[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

